20 April 1981

4-1

SECTION 4 NORMAL PROCEDURES

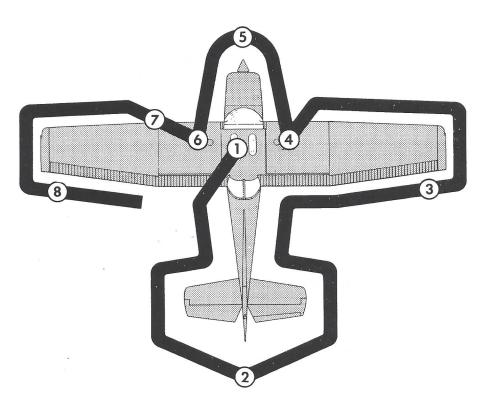
TABLE OF CONTENTS
Pag
Introduction
CHECKLIST PROCEDURES
Preflight Inspection 4- Cabin 4- Empennage 4- Right Wing, Trailing Edge 4- Nose 4- Left Wing 4- Left Wing, Leading Edge 4- Left Wing, Trailing Edge 4- Before Starting Engine 4- Starting Engine (Temperatures Above Freezing) 4- Before Takeoff 4- Normal Takeoff 4- Short Field Takeoff 4- Enroute Climb 4- Cruise 4- Descent 4- Before Landing 4- Normal Landing 4- Short Field Landing 4- Short Field Landing 4- Short Field Landing 4- After Landing 4- Securing Airplane 4-
AMPLIFIED PROCEDURES
Preflight Inspection

SECTION 4 NORMAL PROCEDURES

CESSNA MODEL 152

TABLE OF CONTENTS (Continued)

TABLE OF CONTINUES,	Page
Taxiing	4-12
Before Takeoff	4-14
Warm-Up	4-14
Magneto Check	4-14
Alternator Check	4-14
Takeoff	4-15
Power Check	4-15
Wing Flap Settings	
Crosswind Takeoff	
Enroute Climb	4-16
Cruise	4-16
Leaning With A Cessna Economy Mixture Indicator (EGT)	4-17
Fuel Savings Procedures For Flight Training Operations	4-18
Stalls	4-19
Spins	4-19
Landing	4-21
Short Field Landing	
Crosswind Landing	
Balked Landing	- 10000
Cold Weather Operation	4.00
Noise Characteristics	ユーだり


INTRODUCTION

Section 4 provides checklist and amplified procedures for the conduct of normal operation. Normal procedures associated with optional systems can be found in Section 9.

SPEEDS FOR NORMAL OPERATION

Unless otherwise noted, the following speeds are based on a maximum weight of 1670 pounds and may be used for any lesser weight.

weight of 1070 pounds and may be used for any lesser weigh	.ն.		
Takeoff:			
Normal Climb Out	65-	75 F	KIAS
Short Field Takeoff, Flaps 10°, Speed at 50 Feet	. ;	54 F	KIAS
Climb, Flaps Up:			
Normal	70-	80 F	KIAS
Best Rate of Climb, Sea Level	. (67 F	KIAS
Best Rate of Climb, 10,000 Feet	. (61 F	KIAS
Best Angle of Climb, Sea Level thru 10,000 Feet	. !	55 F	KIAS
Landing Approach:			
Normal Approach, Flaps Up	60-	70 F	KIAS
Normal Approach, Flaps 30°	55-6	85 F	KIAS
Short Field Approach, Flaps 30°	. !	54 F	CIAS
Balked Landing:			
Maximum Power, Flaps 20°		55 F	CIAS
Maximum Recommended Turbulent Air Penetration Speed:			
1670 Lbs	1/	14 F	CTAS
1500 Lbs	(38 1	CTAS
1350 Lbs	. (של על	ZIAS
Maximum Demonstrated Crosswind Velocity	19		OTS
	TE	TZTA	019

NOTE

Visually check airplane for general condition during walk-around inspection. Use of the refueling steps and assist handles (if installed) will simplify access to the upper wing surfaces for visual checks and refueling operations. In cold weather, remove even small accumulations of frost, ice or snow from wing, tail and control surfaces. Also, make sure that control surfaces contain no internal accumulations of ice or debris. Prior to flight, check that pitot heater (if installed) is warm to touch within 30 seconds with battery and pitot heat switches on. If a night flight is planned, check operation of all lights, and make sure a flashlight is available.

Figure 4-1. Preflight Inspection

CHECKLIST PROCEDURES

PREFLIGHT INSPECTION

1 CABIN

- 1. Pilot's Operating Handbook -- AVAILABLE IN THE AIRPLANE.
- Parking Brake -- SET.
- 3. Control Wheel Lock -- REMOVE.
- 4. Ignition Switch -- OFF.
- 5. Master Switch -- ON.

WARNING

When turning on the master switch, using an external power source, or pulling the propeller through by hand, treat the propeller as if the ignition switch were on. Do not stand, nor allow anyone else to stand, within the arc of the propeller, since a loose or broken wire, or a component malfunction, could cause the propeller to rotate.

- 6. Fuel Quantity Indicators -- CHECK QUANTITY.
 - 7. Avionics Cooling Fan -- CHECK AUDIBLY FOR OPERATION.
 - 8. Master Switch -- OFF.
 - 9. Fuel Shutoff Valve -- ON.

(2) EMPENNAGE

- 1. Rudder Gust Lock -- REMOVE.
- 2. Tail Tie-Down -- DISCONNECT.
- 3. Control Surfaces -- CHECK freedom of movement and security.

(3) RIGHT WING Trailing Edge

1. Aileron -- CHECK freedom of movement and security.

(4) RIGHT WING

- 1. Wing Tie-Down -- DISCONNECT.
- 2. Main Wheel Tire -- CHECK for proper inflation.
- 3. Fuel Tank Sump Quick-Drain Valve -- DRAIN fuel (using sampler cup) to check for water, sediment, and proper fuel grade before first flight of day and after each refueling. If water is observed, take

further samples until there is no evidence of water contamination.

- 4. Fuel Line Quick-Drain Valve (on bottom of fuselage near cabin door) -- DRAIN fuel (using sampler cup) to check for water, sediment, and proper fuel grade before first flight of day and after each refueling. If water is observed, take further samples until there is no evidence of water contamination.
- 5. Fuel Quantity -- CHECK VISUALLY for desired level.

6. Fuel Filler Cap -- SECURE.

5 NOSE

 Engine Oil Dipstick/Filler Cap -- CHECK oil level, then check dipstick/filler cap SECURE. Do not operate with less than four

quarts. Fill to six quarts for extended flight.

2. Fuel Strainer Drain Knob -- PULL OUT for about four seconds to clear strainer of possible water and sediment before first flight of day and after each refueling. Return drain knob full in and check strainer drain CLOSED. If water is observed, the fuel system may contain additional water, and further draining of the system at the strainer, fuel tank sumps, and fuel line drain valve must be accomplished.

3. Propeller and Spinner -- CHECK for nicks and security.

 Carburetor Air Filter -- CHECK for restrictions by dust or other foreign matter.

5. Landing Light(s)) -- CHECK for condition and cleanliness.

6. Nose Wheel Strut and Tire -- CHECK for proper inflation.

7. Nose Tie-Down -- DISCONNECT.

8. Static Source Opening (left side of fuselage) -- CHECK for stoppage.

6 LEFT WING

1. Main Wheel Tire -- CHECK for proper inflation.

2. Fuel Tank Sump Quick-Drain Valve -- DRAIN fuel (using sampler cup) to check for water, sediment, and proper fuel grade before first flight of day and after each refueling. If water is observed, take further samples until there is no evidence of water contamination.

3. Fuel Quantity -- CHECK VISUALLY for desired level.

4. Fuel Filler Cap -- SECURE.

7 LEFT WING Leading Edge

1. Pitot Tube Cover -- REMOVE and check opening for stoppage.

2. Stall Warning Opening -- CHECK for stoppage. To check the system, place a clean handkerchief over the vent opening and apply suction; a sound from the warning horn will confirm system

operation.

- 3. Fuel Tank Vent Opening -- CHECK for stoppage.
- 4. Wing Tie-Down -- DISCONNECT.

8 LEFT WING Trailing Edge

1. Aileron -- CHECK freedom of movement and security.

BEFORE STARTING ENGINE

- 1. Preflight Inspection -- COMPLETE.
- 2. Passenger Briefing -- COMPLETE.
- Seats, Seat Belts, Shoulder Harnesses -- ADJUST and LOCK.
- . Brakes -- TEST and SET.
- 5. Circuit Breakers -- CHECK IN.
- 6. Radios, Electrical Equipment -- OFF.
- 7. Fuel Shutoff Valve -- ON.

STARTING ENGINE (Temperatures Above Freezing)

NOTE

For cold weather starting procedures, refer to page 4-22.

- 1. Prime -- AS REQUIRED (up to 3 strokes none if engine is warm).
- 2. Carburetor Heat -- COLD.
- 3. Throttle -- OPEN 1/2 INCH (CLOSED if engine is warm).
- 4. Mixture -- RICH.
- 5. Propeller Area -- CLEAR.
- 6. Master Switch -- ON.
- 7. Ignition Switch -- START (release when engine starts).
- 8. Throttle -- ADJUST for 1000 RPM or less.
- 9. Oil Pressure -- CHECK.
- 10. Flashing Beacon and Navigation Lights -- ON as required.
- 11. Radios -- ON.

BEFORE TAKEOFF

- Parking Brake -- SET.
- 2. Seats, Seat Belts, Shoulder Harnesses -- CHECK SECURE.
- 3. Cabin Doors -- CLOSED and LATCHED.

- 4. Flight Controls -- FREE and CORRECT.
- 5. Flight Instruments -- CHECK and SET.
- 6. Fuel Quantity -- CHECK.
- 7. Fuel Shutoff Valve -- RECHECK ON.
- 8. Mixture -- RICH (below 3000 feet).
- 9. Elevator Trim -- SET for takeoff.
- 10. Throttle -- 1700 RPM.
 - a. Magnetos -- CHECK (RPM drop should not exceed 125 RPM on either magneto or 50 RPM differential between magnetos).
 - b. Carburetor Heat -- CHECK (for RPM drop).
 - c. Suction Gage -- CHECK.
 - d. Engine Instruments and Ammeter -- CHECK.
- 11. Throttle -- 1000 RPM OR LESS.
- 12. Throttle Friction Lock -- ADJUST.
- 13. Strobe Lights -- AS DESIRED.
- 14. Radios and Avionics -- SET.
- 15. Wing Flaps -- SET for takeoff (see Takeoff checklists).
- 16. Brakes -- RELEASE.

TAKEOFF

NORMAL TAKEOFF

- 1. Wing Flaps -- 0°- 10°.
- 2. Carburetor Heat -- COLD.
- 3. Throttle -- FULL OPEN.
- 4. Elevator Control -- LIFT NOSE WHEEL at 50 KIAS.
- 5. Climb Speed -- 65-75 KIAS.

SHORT FIELD TAKEOFF

- 1. Wing Flaps -- 10°.
- 2. Carburetor Heat -- COLD.
- 3. Brakes -- APPLY.
- 4. Throttle -- FULL OPEN.
- 5. Mixture -- RICH (above 3000 feet, LEAN to obtain maximum RPM).
- 6. Brakes -- RELEASE.
- 7. Elevator Control -- SLIGHTLY TAIL LOW.
- 8. Climb Speed -- 54 KIAS (until all obstacles are cleared).
- 9. Wing Flaps -- RETRACT slowly after reaching 60 KIAS.

ENROUTE CLIMB

1. Airspeed -- 70-80 KIAS.

NOTE

If a maximum performance climb is necessary, use speeds shown in the Maximum Rate Of Climb chart in Section 5.

- 2. Throttle -- FULL OPEN.
- Mixture -- RICH below 3000 feet, LEAN for maximum RPM above 3000 feet.

CRUISE

- 1. Power -- 1900-2550 RPM.
- 2. Elevator Trim -- ADJUST.
- 3. Mixture -- LEAN.

DESCENT

- 1. Carburetor Heat -- FULL HEAT AS REQUIRED.
- 2. Power -- AS DESIRED.
- 3. Mixture -- ADJUST for smooth operation (full rich for idle power).

BEFORE LANDING

- 1. Seats, Seat Belts, Shoulder Harnesses -- ADJUST and LOCK.
- 2. Mixture -- RICH.
- 3. Carburetor Heat -- ON (apply full heat before reducing power).

LANDING

NORMAL LANDING

- 1. Airspeed -- 60-70 KIAS (flaps UP).
 - 2. Wing Flaps -- AS DESIRED (below 85 KIAS).
- 3. Airspeed -- 55-65 KIAS (flaps DOWN). 4. Touchdown -- MAIN WHEELS FIRST.
- 4. Touchdown -- MAIN WHEELS FIRST.
 5. Landing Boll -- LOWER NOSE WHEEL GENTLY
- 5. Landing Roll -- LOWER NOSE WHEEL GENTLY.6. Braking -- MINIMUM REQUIRED.

SHORT FIELD LANDING

- 1. Airspeed -- 60-70 KIAS (flaps UP).
- 2. Wing Flaps -- 30° (below 85 KIAS).
- 3. Airspeed -- MAINTAIN 54 KIAS.
- 4. Power -- REDUCE to idle as obstacle is cleared.
- 5. Touchdown -- MAIN WHEELS FIRST.
- 6. Brakes -- APPLY HEAVILY.
- 7. Wing Flaps -- RETRACT.

BALKED LANDING

- 1. Throttle -- FULL OPEN.
- 2. Carburetor Heat -- COLD.
- 3. Wing Flaps -- RETRACT to 20°.
- 4. Airspeed -- 55 KIAS.
- 5. Wing Flaps -- RETRACT (slowly).

AFTER LANDING

- 1. Carburetor Heat -- COLD.
- 2. Wing Flaps -- UP.

SECURING AIRPLANE

- 1. Parking Brake -- SET.
- 2. Electrical Equipment -- OFF.
- 3. Radios and Avionics -- OFF.
- 4. Mixture -- IDLE CUT-OFF (pull full out).
- 5. Ignition Switch -- OFF.
- 6. Master Switch -- OFF.
- 7. Control Lock -- INSTALL.

AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION

The Preflight Inspection, described in figure 4-1 and adjacent checklist, is recommended for the first flight of the day. Inspection procedures for subsequent flights are normally limited to brief checks of control surface hinges, fuel and oil quantity, and security of fuel and oil filler caps and draining of the fuel strainer. If the airplane has been in extended storage, has had recent major maintenance, or has been operated from marginal airports, a more extensive exterior inspection is recommended.

After major maintenance has been performed, the flight and trim tab controls should be double-checked for free and correct movement and security. The security of all inspection plates on the airplane should be checked following periodic inspection. If the airplane has been waxed or polished, check the external static pressure source hole for stoppage.

If the airplane has been exposed to much ground handling in a crowded hangar, it should be checked for dents and scratches on wings, fuselage, and tail surfaces, as well as damage to navigation and anti-collision lights, and avionic antennas.

Outside storage for long periods may result in dust and dirt accumulation on the induction air filter, obstructions in airspeed system lines, and condensation in fuel tanks. If any water is detected in the fuel system, the fuel tank sump quick-drain valves, fuel line quick-drain valve, and fuel strainer should all be thoroughly drained until there is no evidence of water or sediment contamination. Outside storage in windy or gusty areas, or tie-down adjacent to taxiing airplanes, calls for special attention to control surface stops, hinges, and brackets to detect the presence of wind damage.

If the airplane has been operated from muddy fields or in snow or slush, check the main and nose gear wheel fairings for obstuctions and cleanliness. Operation from a gravel or cinder field will require extra attention to propeller tips and abrasion on leading edges of the horizontal tail. Stone damage to the propeller can seriously reduce the fatigue life of the blades.

Airplanes that are operated from rough fields, especially at high altitudes, are subjected to abnormal landing gear abuse. Frequently check all components of the landing gear, shock strut, tires, and brakes. If the shock strut is insufficiently extended, undue landing and taxi loads will be subjected on the airplane structure.

To prevent loss of fuel in flight, make sure the fuel tank filler caps are tightly sealed after any fuel system check or servicing. Fuel system vents should also be inspected for obstructions, ice or water, especially after exposure to cold, wet weather.

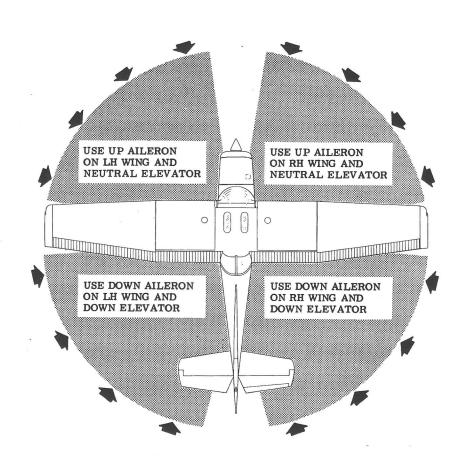
STARTING ENGINE (Temperatures Above Freezing)

During engine starting, open the throttle approximately 1/2 inch. In warm weather, one stroke of the primer should be sufficient. In temperatures near freezing, up to 3 strokes of the primer may be necessary. As the engine starts, slowly adjust the throttle as required for 1000 RPM or less. If the engine is still warm from previous operation, it may be started with the throttle closed and no priming.

Weak intermittent firing followed by puffs of black smoke from the exhaust stack indicates overpriming or flooding. Excess fuel can be cleared from the combustion chambers by the following procedure: set the mixture control in the idle cut-off position, the throttle full open, and crank the engine through several revolutions with the starter. Repeat the starting procedure without any additional priming.

If the engine is underprimed (most likely in cold weather with a cold engine) it will not fire at all, and additional priming will be necessary.

After starting, if the oil gage does not begin to show pressure within 30 seconds in the summertime and about twice that long in very cold weather, stop the engine and investigate. Lack of oil pressure can cause serious engine damage. After starting, avoid the use of carburetor heat unless icing conditions prevail.


NOTE

Details concerning cold weather starting and operation at temperatures below freezing may be found under Cold Weather Operation paragraphs in this section.

TAXIING

When taxiing, it is important that speed and use of brakes be held to a minimum and that all controls be utilized (see Taxiing Diagram, figure 4-2) to maintain directional control and balance.

SECTION 4 NORMAL PROCEDURES

CODE

WIND DIRECTION

NOTE

Strong quartering tail winds require caution. Avoid sudden bursts of the throttle and sharp braking when the airplane is in this attitude. Use the steerable nose wheel and rudder to maintain direction.

Figure 4-2. Taxiing Diagram

The carburetor heat control knob should be pushed full in during all ground operations unless heat is absolutely necessary. When the knob is pulled out to the heat position, air entering the engine is not filtered.

Taxiing over loose gravel or cinders should be done at low engine speed to avoid abrasion and stone damage to the propeller tips.

The nose wheel is designed to automatically center straight ahead when the nose strut is fully extended. In the event the nose strut is overinflated and the airplane is loaded to a rearward center of gravity position, it may be necessary to partially compress the strut to permit steering. This can be accomplished prior to taxiing by depressing the airplane nose (by hand) or during taxi by sharply applying brakes.

BEFORE TAKEOFF

WARM-UP

Most of the warm-up will have been conducted during taxi, and additional warm-up before takeoff should be restricted to the checklist procedures. Since the engine is closely cowled for efficient in-flight cooling, precautions should be taken to avoid overheating on the ground.

MAGNETO CHECK

The magneto check should be made at 1700 RPM as follows. Move ignition switch first to R position and note RPM. Next move switch back to BOTH to clear the other set of plugs. Then move switch to the L position, note RPM and return the switch to the BOTH position. RPM drop should not exceed 125 RPM on either magneto or show greater than 50 RPM differential between magnetos. If there is a doubt concerning operation of the ignition system, RPM checks at higher engine speeds will usually confirm whether a deficiency exists.

An absence of RPM drop may be an indication of faulty grounding of one side of the ignition system or should be cause for suspicion that the magneto timing is set in advance of the setting specified.

ALTERNATOR CHECK

Prior to flights where verification of proper alternator and alternator control unit operation is essential (such as night or instrument flights), a positive verification can be made by loading the electrical system momentarily (3 to 5 seconds) with the landing light, or by operating the wing flaps during the engine runup (1700 RPM). The ammeter will remain

within a needle width of its initial position if the alternator and alternator control unit are operating properly.

TAKEOFF

POWER CHECK

It is important to check full-throttle engine operation early in the takeoff roll. Any sign of rough engine operation or sluggish engine acceleration is good cause for discontinuing the takeoff. If this occurs, you are justified in making a thorough full-throttle static runup before another takeoff is attempted. The engine should run smoothly and turn approximately 2280 to 2380 RPM with carburetor heat off and mixture leaned to maximum RPM.

Full throttle runups over loose gravel are especially harmful to propeller tips. When takeoffs must be made over a gravel surface, it is very important that the throttle be advanced slowly. This allows the airplane to start rolling before high RPM is developed, and the gravel will be blown back of the propeller rather than pulled into it. When unavoidable small dents appear in the propeller blades, they should be immediately corrected as described in Section 8 under Propeller Care.

Prior to takeoff from fields above 3000 feet elevation, the mixture should be leaned to give maximum RPM in a full-throttle, static runup.

After full throttle is applied, adjust the throttle friction lock clockwise to prevent the throttle from creeping back from a maximum power position. Similar friction lock adjustment should be made as required in other flight conditions to maintain a fixed throttle setting.

WING FLAP SETTINGS

Normal takeoffs are accomplished with wing flaps 0° - 10° . Using 10° wing flaps reduces the total distance over an obstacle by approximately 10%. Flap deflections greater than 10° are not approved for takeoff. If 10° wing flaps are used for takeoff, they should be left down until all obstacles are cleared and a safe flap retraction speed of 60 KIAS is reached.

On a short field, 10° wing flaps and an obstacle clearance speed of 54 KIAS should be used. This speed provides the best overall climb speed to clear obstacles when taking into account turbulence often found near ground level.

Soft or rough field takeoffs are performed with 10° wing flaps by lifting

SECTION 4 NORMAL PROCEDURES

CESSNA MODEL 152

the airplane off the ground as soon as practical in a slightly tail-low attitude. If no obstacles are ahead, the airplane should be leveled off immediately to accelerate to a higher climb speed.

CROSSWIND TAKEOFF

Takeoffs into strong crosswinds normally are performed with the minimum flap setting necessary for the field length, to minimize the drift angle immediately after takeoff. With the ailerons partially deflected into the wind, the airplane is accelerated to a speed slightly higher than normal, and then pulled off abruptly to prevent possible settling back to the runway while drifting. When clear of the ground, make a coordinated turn into the wind to correct for drift.

ENROUTE CLIMB

Normal climbs are performed with flaps up and full throttle and at speeds 5 to 10 knots higher than best rate-of-climb speeds for the best combination of performance, visibility and engine cooling. The mixture should be full rich below 3000 feet and may be leaned above 3000 feet for smoother operation or to obtain maximum RPM. For maximum rate of climb, use the best rate-of-climb speeds shown in the Rate Of Climb chart in Section 5. If an obstruction dictates the use of a steep climb angle, the best angle-of-climb speed should be used with flaps up and maximum power. Climbs at speeds lower than the best rate-of-climb speed should be of short duration to improve engine cooling.

CRUISE

Normal cruising is performed between 55% and 75% power. The engine RPM and corresponding fuel consumption for various altitudes can be determined by using your Cessna Power Computer or the data in Section 5.

NOTE

Cruising should be done at a minimum of 75% power until a total of 25 hours has accumulated or oil consumption has stabilized. Operation at this higher power will ensure proper seating of the rings and is applicable to new engines, and engines in service following cylinder replacement or top overhaul of one or more cylinders.

The data in Section 5 shows the increased range and improved fuel economy that is obtainable when operating at lower power settings. The use of lower power settings and the selection of cruise altitude on the basis of the most favorable wind conditions are significant factors that should be considered on every trip to reduce fuel consumption.

CESSNA MODEL 152

SECTION 4 NORMAL PROCEDURES

	75% POWER		65% POWER		55% POWER	
ALTITUDE	KTAS	NMPG	KTAS	NMPG	KTAS	NMPG
Sea Level	100	16.4	94	17.8	87	19.3
4000 Feet	103	17.0	97	18.4	89	19.8
8000 Feet	107	17.6	100	18.9	91	20.4
Standard Conditions Zero Wind					Wind	

Figure 4-3. Cruise Performance Table

The Cruise Performance Table, figure 4-3, shows the true airspeed and nautical miles per gallon during cruise for various altitudes and percent powers. This table should be used as a guide, along with the available winds aloft information, to determine the most favorable altitude and power setting for a given trip.

To achieve the recommended lean mixture fuel consumption figures shown in Section 5, the mixture should be leaned until engine RPM peaks and drops 25-50 RPM. At lower powers it may be necessary to enrichen the mixture slightly to obtain smooth operation.

Carburetor ice, as evidenced by an unexplained drop in RPM, can be removed by application of full carburetor heat. Upon regaining the original RPM (with heat off), use the minimum amount of heat (by trial and error) to prevent ice from forming. Since the heated air causes a richer mixture, readjust the mixture setting when carburetor heat is to be used continuously in cruise flight.

The use of full carburetor heat is recommended during flight in very heavy rain to avoid the possibility of engine stoppage due to excessive water ingestion. The mixture setting should be readjusted for smoothest operation.

LEANING WITH A CESSNA ECONOMY MIXTURE INDICATOR (EGT)

Exhaust gas temperature (EGT) as shown on the optional Cessna Economy Mixture Indicator may be used as an aid for mixture leaning in cruising flight at 75% power or less. To adjust the mixture, using this indicator, lean to establish the peak EGT as a reference point and then

SECTION 4 NORMAL PROCEDURES

CESSNA MODEL 152

MIXTURE DESCRIPTION	EXHAUST GAS TEMPERATURE		
RECOMMENDED LEAN (Pilot's Operating Handbook and Power Computer)	25 ⁰ F Rich of Peak EGT		
BEST ECONOMY	Peak EGT		

Figure 4-4. EGT Table

enrichen the mixture by the desired increment based on figure 4-4.

As noted in this table, operation at peak EGT provides the best fuel economy. This results in approximately 8% greater range than shown in this handbook accompanied by approximately a 4 knot decrease in speed.

Under some conditions, engine roughness may occur while operating at peak EGT. In this case, operate at the Recommended Lean mixture. Any change in altitude or throttle position will require a recheck of EGT indication.

FUEL SAVINGS PROCEDURES FOR FLIGHT TRAINING OPERATIONS

For best fuel economy during flight training operations, the following procedures are recommended.

- Lean the mixture for maximum RPM during climbs above 3000 feet. The mixture may be left leaned for practicing such maneuvers as stalls.
- 2. Lean the mixture for maximum RPM during all operations at any altitude, including those below 3000 feet, when using 75% or less power.

NOTE

When cruising at 75% or less power, the mixture may be further leaned until the RPM peaks and drops 25-50 RPM. This is especially applicable to cross-country training flights, but may also be practiced during transition flights

THIS DATA APPLICABLE ONLY TO AIRPLANES WITH LYCOMING O-235-L2C ENGINE FOR AIRPLANES WITH ENGINE MODIFIED TO O-235-N2C, REFER TO DATA IN SECTION 9 SUPPLEMENT

CESSNA MODEL 152 SECTION 4 NORMAL PROCEDURES

to and from the practice area.

Using the above recommended procedures can provide fuel savings of up to 7% when compared to typical training operations at full rich mixture.

STALLS

The stall characteristics are conventional for the flaps up and flaps down condition. The stall warning horn produces a steady signal 5 to 10 knots before the actual stall is reached and remains on until the airplane flight attitude is changed. Stall speeds for various combinations of flap setting and bank angle are summarized in Section 5.

SPINS

Intentional spins are approved in this airplane (see Section 2). Before attempting to perform spins, however, several items should be carefully considered to assure a safe flight. No spins should be attempted without first having received dual instruction in both spin entries and spin recoveries from a qualified instructor who is familiar with the spin characteristics of the Cessna 152.

The cabin should be clean and all loose equipment (including the microphone) should be stowed. For a solo flight in which spins will be conducted, the copilot's seat belt and shoulder harness should be secured. Spins with baggage loadings or occupied child's seat are not approved.

The seat belts and shoulder harnesses should be adjusted to provide proper restraint during all anticipated flight conditions. However, care should be taken to ensure that the pilot can easily reach the flight controls and produce maximum control travels.

It is recommended that, where feasible, entries be accomplished at high enough altitude that recoveries are completed 4000 feet or more above ground level. At least 1000 feet of altitude loss should be allowed for a 1-turn spin and recovery, while a 6-turn spin and recovery may require somewhat more than twice that amount. For example, the recommended entry altitude for a 6-turn spin would be 6000 feet above ground level. In any case, entries should be planned so that recoveries are completed well above the minimum 1500 feet above ground level required by FAR 91.71. Another reason for using high altitudes for practicing spins is that a greater field of view is provided which will assist in maintaining pilot

20 April 1981 Revision 1 - 31 March 1983

orientation.

The normal entry is made from a power-off stall. As the stall is approached, the elevator control should be smoothly pulled to the full aft position. Just prior to reaching the stall "break", rudder control in the desired direction of the spin rotation should be applied so that full rudder deflection is reached almost simultaneously with reaching full aft elevator. A slightly greater rate of deceleration than for normal stall entries or the use of partial power at the entry will assure more consistent and positive entries to the spin. Both elevator and rudder controls should be held full with the spin until the spin recovery is initiated. An inadvertent relaxation of either of these controls could result in the development of a nose-down spiral.

NOTE

Careful attention should be taken to assure that the aileron control is neutral during all phases of the spin since any aileron deflection in the direction of the spin may alter the spin characteristics by increasing the rotation rate and changing the pitch attitude.

For the purpose of training in spins and spin recoveries, a 1 to 2-turn spin is adequate and should be used. Up to 2 turns, the spin will progress to a fairly rapid rate of rotation and a steep attitude. Application of recovery controls will produce prompt recoveries of from 1/4 to 1/2 of a turn.

If the spin is continued beyond the 2 to 3-turn range, some change in character of the spin may be noted. Rotation rates may vary and some additional sideslip may be felt. Normal recoveries from such extended spins may take up to a full turn or more.

Regardless of how many turns the spin is held or how it is entered, the following recovery technique should be used:

- 1. VERIFY THAT AILERONS ARE NEUTRAL AND THROTTLE IS IN IDLE POSITION.
- 2. APPLY AND **HOLD** FULL RUDDER OPPOSITE TO THE DIRECTION OF ROTATION.
- 3. JUST AFTER THE RUDDER REACHES THE STOP, MOVE THE CONTROL WHEEL BRISKLY FORWARD FAR ENOUGH TO BREAK THE STALL. Full down elevator may be required at aft center of gravity loadings to assure optimum recoveries.
- 4. HOLD THESE CONTROL INPUTS UNTIL ROTATION STOPS. Premature relaxation of the control inputs may extend the recovery
- 5. AS ROTATION STOPS, NEUTRALIZE RUDDER, AND MAKE A SMOOTH RECOVERY FROM THE RESULTING DIVE.

NOTE

If disorientation precludes a visual determination of the direction of rotation, the symbolic airplane in the turn coordinator may be referred to for this information.

Variations in basic airplane rigging or in weight and balance due to installed equipment or cockpit occupancy can cause differences in behavior, particularly in extended spins. These differences are normal and will result in variations in the spin characteristics and in the recovery lengths for spins of more than 3 turns. However, the above recovery procedure should always be used and will result in the most expeditious recovery from any spin.

Intentional spins with flaps extended are prohibited, since the high speeds which may occur during recovery are potentially damaging to the flap/wing structure.

LANDING

NORMAL LANDING

Normal landing approaches can be made with power-on or power-off at speeds of 60 to 70 KIAS with flaps up, and 55 to 65 KIAS with flaps down. Surface winds and air turbulence are usually the primary factors in determining the most comfortable approach speeds.

Actual touchdown should be made with power-off and on the main wheels first. The nose wheel should be lowered smoothly to the runway as speed is diminished.

SHORT FIELD LANDING

For a short field landing in smooth air conditions, make an approach at 54 KIAS with 30° flaps using enough power to control the glide path. After all approach obstacles are cleared, progressively reduce power and maintain 54 KIAS by lowering the nose of the airplane. Touchdown should be made with power-off and on the main wheels first. Immediately after touchdown, lower the nose wheel and apply heavy braking as required. For maximum brake effectiveness, retract the flaps, hold full nose-up elevator, and apply maximum brake pressure without sliding the tires.

Slightly higher approach speeds should be used under turbulent air conditions.

CROSSWIND LANDING

When landing in a strong crosswind, use the minimum flap setting required for the field length. Use a wing low, crab, or a combination method of drift correction and land in a nearly level attitude.

BALKED LANDING

In a balked landing (go-around) climb, the wing flap setting should be reduced to 20° immediately after full power is applied. Upon reaching a safe airspeed, the flaps should be slowly retracted to the full up position.

COLD WEATHER OPERATION

Prior to starting with temperatures below freezing, it is advisable to pull the propeller through several times by hand to "break loose" or "limber" the oil, thus conserving battery energy.

NOTE

When pulling the propeller through by hand, treat it as if the ignition switch is turned on. A loose or broken ground wire on either magneto could cause the engine to fire.

Preheat is generally required with outside air temperatures below -18°C (0°F) and is recommended when temperatures are below -7°C (20°F).

Cold weather starting procedures are as follows:

With Preheat:

- 1. Parking Brake -- SET.
- 2. Ignition Switch -- OFF.
- 3. Throttle -- CLOSED.
- 4. Mixture -- IDLE CUT-OFF.
- 5. Prime -- 2 to 4 STROKES as the propeller is being turned over by hand. RECHARGE for priming after engine start.

NOTE

Caution should be used to ensure the brakes are set or a qualified person is at the controls.

- Throttle -- OPEN 1/2 to 3/4 INCH.
- 7. Mixture -- RICH.
- 8. Propeller Area -- CLEAR.

- 9. Master Switch -- ON.
- 10. Ignition Switch -- START (release when engine starts).
- 11. Prime -- AS REQURIED until the engine runs smoothly.
- 12. Throttle -- ADJUST for 1200 to 1500 RPM for approximately one minute after which the RPM can be lowered to 1000 or less.
- 13. Oil Pressure -- CHECK.
- 14. Primer -- LOCK.

Without Preheat:

The procedure for starting without preheat is the same as with preheat except the engine should be primed an additional two strokes while pulling the propeller through by hand. Carburetor heat should be applied after the engine starts. Leave the carburetor heat on until the engine runs smoothly.

NOTE

If the engine fires but does not start or continue running, repeat the above starting procedure beginning with step 5. If the engine does not start during the first few attempts, or if engine firing diminishes in strength, it is possible that the spark plugs have been frosted over, in which case preheat must be used before another start is attempted.

During cold weather operations, no indication will be apparent on the oil temperature gage prior to takeoff if outside air temperatures are very cold. After a suitable warm-up period (2 to 5 minutes at 1000 RPM), accelerate the engine several times to higher engine RPM. If the engine accelerates smoothly and oil pressure remains normal and steady, the airplane is ready for takeoff.

When operating in temperatures below -18°C, avoid using partial carburetor heat. Partial heat may increase the carburetor air temperature to the 0° to 21°C range, where icing is critical under certain atmospheric conditions.

NOISE CHARACTERISTICS

Increased emphasis on improving the quality of our environment requires renewed effort on the part of all pilots to minimize the effect of airplane noise on the public.

We, as pilots, can demonstrate our concern for environmental improvement, by application of the following suggested procedures, and thereby tend to build public support for aviation:

- Pilots operating aircraft under VFR over outdoor assemblies of persons, recreational and park areas, and other noise-sensitive areas should make every effort to fly not less than 2000 feet above the surface, weather permitting, even though flight at a lower level may be consistent with the provisions of government regulations.
- 2. During departure from or approach to an airport, climb after takeoff and descent for landing should be made so as to avoid prolonged flight at low altitude near noise-sensitive areas.

NOTE

The above recommended procedures do not apply where they would conflict with Air Traffic Control clearances or instructions, or where, in the pilot's judgment, an altitude of less than 2000 feet is necessary for him to adequately exercise his duty to see and avoid other aircraft.

The certificated noise level for the Model 152 at 1670 pounds maximum weight is 66.3 dB(A). No determination has been made by the Federal Aviation Administration that the noise levels of this airplane are or should be acceptable or unacceptable for operation at, into, or out of, any airport.